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Abstract

A m inim um energy control problem is considered for commutative bilinear

systems with and without terminal constraints. Optimal controls are shown

to be constant vectors determined by the boundary conditions. Sufficient

conditions are derived for uniqueness of the optimal control in the absence

of a terminal constraint. A class of physical bilinear systems is dis-

cussed which possess the commutative property.
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I. Introduction

Consider the multi-input bilinear system

x CA + B.u.] x (1.)

x(t
0
) 

~~ 
c

where (A,B •.B ) are nxn constant matrices and u = (u ••u ) is a vector
1. in 1 m

of control inputs with each component u.(t) assumed to be a square integrable

function on every finite time interval, t
o ~ 

t ~ t1
. A subclass of the

system (1) is the “commutative bilinear system” in which each pair of matrices

in the set (A ,B ..B ) commute , i.e. AB . B.A and B.B.  = B. B. for all1 in 1 1 1]  j i

i,j .  Sussmann [1] has shown that the attainable set for this subclass is

closed relative to “bang-bang” control functions. Baras and Hampton [2] ex-

tended this result to a class of delayed commutative bilinear systems.

In this paper, a minimum energy control problem for commutative bilinear

systems is studied both with and without endpoint constraints on the state.

It is shown that a given terminal state x(t
1

) x1 is reachable at some

time t
1 

> t
0 

if and only if it is constant reachable , i.e. reachable using

a constant input function. This suggests that the optimal control for a

fixed terminal minimum energy regulation problem is simply a constant vector.

In addi tion to verif ying this supposition , the uni queness of solutions is
r7 studied for the regulator problem without an end point constraint and a class

of physical dynamic systems is delineated which possess the commutative

property.
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II. A Commutative Bilinear Physical System

The absolute velocity for the motion of a particle in a moving co-

ordinate system is given by the vector equation (eg. see [3])

(2)

where R is the absolute velocity of the origin of the moving coordinate

system, p is the position vector of the particle relative to the moving

origin , w is the angular rotation rate of the moving coordinate system

and is the velocity of the particle relative to an observer fixed in

the moving coordinate system. If the particle is associated with a target

“T” and the moving origin with a pursuer “P”. and if motion is confined to

the (x ,y) plane, then the kinematic equations for this motion can be

derived as:

x _ v
T
sin 8 + u y  f

y v
T
cosB u

P
x v

P

B U — uT p

where (u ,uT
) are the angular rates of the pursuer and target with respect

to a nonrotating reference frame , (v ,vT) are the line speeds of the pur-

suer and target , (x ,y) are the horizontal and vertical distances of the

target relative to the pursuer , and B is the relative angle between the

headings of the target and pursuer.

The kinematic equations (3) remain valid when all quantities (u
P~

v
P 5uT~vT)

vary with time. These equations arise in a variety of pursuit-evasion type

problems such as the “two car” and “homicidal chauffer” games of Iseacs [~4 ],

In deriving (3) from (2 )  a unit triad (i ,j,k) is defined at P so that
p xi + yj , R = v~j and w u~k at all ttmes.
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aerial combat between two aircraft [5] and a missile intercept problem [6].

In order to associate a commutative bilinear control system with (3) we

assume that the pursuer can manipulate both its speed v~, and its angular

acceleration u~ , and that u~ (t ) vanishes only at pc ints of measure zero

over the time interval of interest. Then there is no loss of generality in

postulating the existence of a scalar valued function y ( t )  such that

v~ (t )  = ~(t)u~(t) (ti )

Defining state variables x1 = x , x2 y and x3 = B for ( 3), and introducing

three auxiliary states according to x.,~ = sin x
3 , 

x5 = cos x
3 

and x
5 

= 1,

( 3) in combination with (4)  is seen to be equivalent to the bilinear system

= Ax + Bxu (5-a )

x(t
0

) Col[x
1
(t ) ,x2(t ) ,x

3
(t ) , sin x3(t ) ,cos x

3
(t) ,l]

0 0 0 _ V
T O O  0 1 0 0 0  0

0 0 0 0 v
T 

0 -10 0 0 0 —Y

A 0 0 0  0 O U T S B 0 0 0 0 0 _ l  (5-b )

0 0 0 0 U
T 

0 0 0 0 0— 1  0

0 0 0 _ U
T

O 0 0 0 0 1 0  0

0 0 0  0 0  0 0 0 0 0 0  0

in which u U is regarded as the primary control variable. It can be

readily verified that A and B commute for all (uT , vT ,Y ) ,  i.e.

0 0 0 0 V
T

O

0 0 0 V
T

O 0 H
AB BA 0 0 0 0 0 0

0 0 0 U
T

O 0

0 0 0 0 U
T 
0

0 0 0 0 0 0

~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~
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and , moreover, this commutative property is independent of y(t) = v (t)/u (t).

An important problem for (5) is the determination of feasible controls

for the intercept condition :

x1
(t
1
) = x

2
(t
1
) = 0 for some t

1 
> t

o, 
(6)

given the initial condition x(t ) x
0 

and the target parameters (u .r~vT)•
If some leeway is allowed for the intercept angle x3

(t
1
) = B1 

and if y

is regarded as a parameter subservient to the terminal constraint (6) , then

a solution exists for this problem in which the control is given by the con-

stant function

x
3
(t 

~~~u + ° — , t ~ t ~ t . (7 )
T t-t o 1

1 0

Integral to this solution is the fact that the parameters (~1,y ) are easily

obtained as solutions to a certain transcendental equation af ter which t
1

is given explicitly as a function of ($1,y) and the initial conditicns. The

details of this solut ion are given in Section IV of [7), along with a closed

form least squares estimate of the parameters (uT,
vT, x3(to) ) ,  as part of a

proposed feedback control law for a missile intercept system.

The question arises as to the interpretation of the control (7)  which

drives the commutative bilinear system (5) from an arbitrary initial state

~o the terminal state (6) in some time interval t
o ~ 

t ~ t1
. The results

of the next section will demonstrate that this simple control, which is rela-

tively easy to compute and implement , is optimal in the m inimum control energy

sense.

III. A ~inimum T nerpy Control Problem

The following definition of reachability is pertinent since we are deal-

ing with a nonlinear control system .
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Definition: The state vectors (x ,x
1
) constitute a reachable pair for

the bilinear system (1) if there exists a square integrable control signal

u(t) which accomplishes the transition from x = x(t ) to x
1 

= x(t
1
)

over some finite time interval to ~ t ~ t1• Likewise , the pair (x ,x1
)

is said to be constant reachable if it is reachable for a constant control

signal.

In the case of a time invariant commutative bilinear system in which

the matrices (A ,B1
..B

~
) commute pair-wise, the solution to (1) corresponding

to any square integrable control signal. u (t )  on t
o ~ 

t ~ t1 
can be written

as (see Sussmann [1])

x(t ) = eMti
_t
o
) IT ~ .(t  ,t )x ( 8)

1 . i l o oi=l

where eAt and ~‘.lt ,t ) are the state transition matrices for the nxn

matrices A and B.u.(t), respectively .t The following result is then easily

obtained.

Assertion A pair (x ,x
1

) for a time invariant commutative bilinear system

is reachable if and only if it is constant reachable.

Proof: The sufficiency part of the proof is true by definition . The neces-

sity part follows upon defining a constant control signal according to the

average value

f
t
1

u = 
1 

u(t)dt . (9)
c t - t jl o t

0

If the pair (x ,x
1
) is reachable using a variable control u(t) on t

o ~ 
t ~ t1~

then (8) and (9) imply

~ote that ~1
(t ,t0

) exP[8
1J 

u.(r)dT] owing to the special form of the time

varying matrix B .u .(t). to
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Tn B .u  (t —t )
x = e~(tl

_t
o
) 

Ii e ~ cj~ 1 ~ x (10)1 
i=l 0

which is just the state response at time t1 using the constant control (9).

This verifies the Assertion.

The above result can be slightly generalized to a class of time varying

commutative bilinear systems of the form

Tn

~(t )  [A(t) + ~ B . a .( t )u . (t ) ]x (t )
i l  1 1

where the matrices (A(t),B
1
..B ) commute pair-wise for all t .  and (x ,x

1
)

is a reachable pair corresponding to a certain control u( t) on (t0 ,t1).

In this case the pair (x ,x
1
) is reachable using the constant control

rr t -1 rt
= IJ ]. 

c~.(t)dt  j 1 c~.( t )u . ( t ) d t ,
i Lt ~ 1 1

0

assuming that the given scalar functions c~.( t ) are such that their integrals

do not vanish over the time interval (t ,t1).

A. Control Without Terminal Constraints

Consider the quadratic cost over a fixed time interval

t lJ1
(u )  = x ’(t 1)Fx(t 1

) + It o u’(t)Ru(t)dt (11)

where F and R are symmetric nonnegative definite constant weighting matrices

with R > 0. The optimal controls for (1) which minimize (11) must satisfy

the following canonical equations from the maximum principle:

= [A + B.u~:]x* , x’~(t 0) = x
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m
= — [A’ + ~ B!u~]p~ p~(t1

) = -Fx~(t1
)

1=1 1 1

X;
~’B~P;~

~~~~~~~~~

Assuming coummutativity between pairs of matrices in the set (A
~
B
i~~

B
m
) it

can be verified directly that ~~
“(t) = 0 for all tc(t ,t1). Putting

t = t
1 

in u~:(t), utilizing the boundary condition for r~~(t1) and the relation

(10), it follows that the constant vector u~ , if it exists , must satisfy the

nonlinear transcendental equation

x~e
A
~
(t
i
_t
o
)
i~1 e

U t
1
_t
0~~jF 1=1 

e~~~~
(t
l
_t
~
)
e
A(t

1
_t
o
)
x

u~ = - ~~
. R~~ 

m 
(12)

i!u~(t -t ) B.u~(t —t 
) M t  —t )

A’(t —t ) n i. ~ 1 o i 1 1 o 1 o
x’e 1 o • e B’ F . e e x

0 i l  n i 1  0)

~ -C(u~).

The existence of optimal controls can he established independently of

the commutativitv condition through the study of the properties of the attain-

able set for (1) and (ii) corresponding to all sciuare inte~rah1e input fun ctions.

The details of this study can be found in Chapter 3 of [8]. Therefore, any con-

clusions based on the necessary conditions of the maximum principle are valid.

These results are summarized in the following theorem together with a suffi-

cient condition for uninueness.

I
IIj___ - ~~~~~~~~~~~~~~~~ . - —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
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Theorem 1: The optimal controls for a time invariant commutative bilinear

system with the quadratic cost (11) are constant vectors u~: satisfying

the transcendental equation (12). The vector u~ is unique if the following

matrix valued function Z(v ) (fl. .)  is nonnegative definite for all v
0 13 o

Z.. = v ’[B~B F  + B~FB .]v (13)
].J 0 3 1  1 ]  0

l,2”m .

For a single input commutative bilinear system (in = 1), uninueness is

guaranteed for the simpler nonnegativity condition :

B~
2F + B~ FD1 ~ 0.

Proof Since the characterization of ~~~ by (12) has already been established ,

we con~ ider the uniqueness of solutions to u~ ÷G(u
a) = 0, where the operator

G is defined by the right side of (12). From the theory of monotone operators

(see ~inty [9]) it is known that the equation u + G(u) = 0 has a unique solu-

tion if (3 is a monotonically increasing map . If C is Frdchet differentiable ,

a sufficient condition for this is that the Fréchet derivative operator ‘3 (u)

be nonnegative definite . By direct computation the Frdchet d ifferential of

~T at u~: with increment h is: 
- -~~

dC(u C ;h) = ~~
. R 1Z(x ).h, h ~ R

m

where
A’(t —t ) in B’u~(t -t ) in B u~(t —t ) A(t -t )

= x’e ~ ri e }ç k 1 ° [B~B.F + B !FB .] n e k k 1 ~ e 1 ° xj~ ° k=l 3 1  ‘ 1 k=l

By hypothesis, the matrix ;~(v ) defined by (13) nonnegative definite , which

implies that the matrix ~(x
0
) above is also nonnegative definite. In turn ,

this assures the monotonicity of G (see Vainberg [10)).

I
k
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If the more general quadratic cost

J (u )  = x’(t1)Fx( t
1

) + J [x ’(t)Qx(t) + u’(t)Ru(t)]dt

t
0

is prescribed in order to weight the state trajectory x(t) through the

symmetric nonnegative definite matrix Q, then the optimal controls satisfy

= [A + ~~B.u~]x* x~
(t ) = x

= -[A’ + ~~B~uflp* + 2Qx~ p~(t1
) = -Fx~(t1

)

x*’3
1p*

u* 4 R ~~ 

[ 

:
x1tB p~Tfl

In this case, the control derivative , ~~~~~
-
“

, becomes (again , using commutativity)

x~:’(t)QB1
x~:(t)

duC, ., — 
—l

�o .
x~ ’(t)QB xC(t)

Although this control represents a simple pure integration on quadratic opera-

tions involving the state , it is considerably more difficult to compute since

the boundary condition is not characterized by an explicitly defined algebraic

equation as in (12).
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B. Control With Terminal Constraints

We now consider the minimum control energy problem for a commutative

— bilinear system subject to a fixed terminal state x( t ) = x

Theorem 2: Given a time invariant commutative bilinear system and a reachable

pair (x ,x
1
), the optimal controls for the cost function

t
l

J~.,(u ) 
f 

u’(t)Ru(t)dt , R > 0 (14)
t
0

are constant vectors u~ satisfying the transcendental equation

A(t ~t ) in B.u’~(t -t )
1 0  1 1  l ox e IT e x .  (15)

1 . 0

Proof: From the Assertion it is known that if the pair (x ,x1
) is reachable

using some control u( t ) ,  t
o ~ 

t ~ t1, 
then it is reachable using the con-

stant control given by (9). Therefore , comparing the costs associated with

these two control fun ctions

f
t1

U = I u ’Ru dt = u’Ru (t -t )1 ) c c  c c l o
t

0

t
l

U
2 

= u ’( t )R u ( t ) d t ,

t
0

it follows from H6lder ’s inequality applied to relation (9) that 
~~ 

~ 02

with equality if and only if u (t )  = a constant vector on (t
0,t1

). Eaua-

tion (15) is simply (10) rewritten. This proves the theorem .

-~ ~O,pI—— ~~~~~~~~~~ ~~~~~~~ 
k .~~~~~~~~~~~~~~~ ..



Brockett [11) obtained a (non-constant) solution to the minimum control

energy problem with a fixed terminal state in the case of nxn matrix state

commutative bilinear systems with det X � 0. By contrast, the solution here

to the vector state case has been shown to be simply a constant control vector.

The following simple example illustrates the nonuniqueness of optimal

controls for a minimum energy problem with a fixed terminal constraint.

Example: Given the commutative bilinear second order system

x
1
(0) 0

= x2 
- ux1 , 

x
2

(0) 1

together with the cost to be minimized and the terminal constraint:

2 x
1
(l) 0

J(u) = J u (t)dt
o x

2
(l) = —e.

It can be seen that (A ,B1
) commute and that (x ( 0) ,x(l)) is a reachable

pair. Hence , by Theorem 2 the optimal controls satisfy (15 ) applied to this

example :

O e s i n uC

-e ecos u~.

Solving for u’~ we obtain uC kiT , k = ±l,±3•~~, and in order that J

be minimized it follows that u~ i~ and u~ = -ir are both optimal.

IV. Concluding Remarks

Although commutative bilinear systems form a very small subset of bilinear

systems, there nevertheless exists an important class of physical systems for

which the condition of commutativity is upheld. The minimum energy controls

for this class relative to the costs (U) and (14) have particularly simple
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forms as constant functions determined by the boundary conditions. Although

these controls are often nonunique , any lack of uniqueness can possibly be

exploited in other ways. For example, the intercept angle 81 
= x3(t1) in

the missile intercept problem discussed briefly in Section II can be traded

off against the scaling parameter y in obtaining physically meaningful solu-

tions for the pursuer speed and acceleration (v~~u~)~ as shown by the simu-

j lations carried out in [7].

In terms of general bilinear systems, whex’e A = AB - BA � 0, the rela-

tively simple solution for the commutative case might be used as a nominal or

— ~
- generating solution for obtaining minimum energy controls in a power series ex-

pansion of the commutator A . These considerations remain to be explored.

.-_,~~~~~~~~. 
— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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